The Nash problem

Alvin Šipraga

28 August 2015

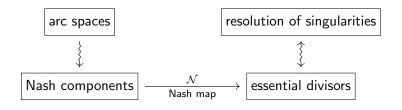
Overview

- 1. resolution of singularities
- 2. essential divisors
- 3. arc spaces

4. Nash
$$\begin{cases} \text{components} \\ \text{map} \\ \text{problem} \end{cases}$$

5. solution for toric varieties

Overview



John F. Nash, Jr., Arc structure of singularities, Duke Math. J. 81 (1995)

Resolution of singularities

X — singular variety over an algebraically closed field k

Idea

"parametrise" the variety X with a smooth variety Y

Problems

- ightharpoonup existence (char X=0, surfaces, toric varieties)
- no obvious choice

Approach

- classification
- minimal resolutions

 $f: Y \rightarrow X$ — resolution of singularities of X

Definition

- ▶ prime divisor on Y closed subvariety of Y of codimension 1
- ▶ exceptional divisor of f prime divisor E on Y such that f(E) is of codimension ≥ 2

 $f: Y \rightarrow X$ — resolution of singularities of X

Definition

- ▶ prime divisor on Y closed subvariety of Y of codimension 1
- ▶ exceptional divisor of f prime divisor E on Y such that f(E) is of codimension ≥ 2

Definition

- exceptional divisor over X equivalence class of exceptional divisors of all resolutions of X
- ▶ essential divisors over Y exceptional divisors over Y corresponding to irreducible components of $f^{-1}(\operatorname{Sing} X)$ for every resolution $f: Y \to X$

```
\{ \text{prime divisors on } Y \} \cup \text{I} \{ \text{exceptional divisors of } f \} \stackrel{\sim}{\longrightarrow} \{ \text{exceptional divisors over } X \} \cup \text{I} \{ \text{essential divisors over } X \}
```

```
\{ \text{prime divisors on } Y \} \cup \mathsf{I} \{ \text{exceptional divisors of } f \} \stackrel{\sim}{\longleftrightarrow} \{ \text{exceptional divisors over } X \} \cup \mathsf{I} \{ \text{essential divisors over } X \} \mid \mathsf{I} \mathsf{I} \mathsf{I} \{ \text{essential components over } Y \}
```

```
\{ \text{prime divisors on } Y \} \cup \mathsf{I} \{ \text{exceptional divisors of } f \} \stackrel{\sim}{\longrightarrow} \{ \text{exceptional divisors over } X \} \cup \mathsf{I} \{ \text{essential divisors over } X \} \mid \mathsf{I} | \{ \text{essential components over } Y \}
```

Arc spaces

X — scheme of finite type over an algebraically closed field k — field extension of k

Definition

▶ arc on X — morphism of the form

$$\operatorname{\mathsf{Spec}} K[[t]] o X$$

▶ arc space of X — scheme X_{∞} whose K-valued points correspond to arcs on X

Arc spaces

Proposition

If $f: Y \to X$ is a resolution, then f_{∞} induces a bijection

$$Y_{\infty} \setminus (f^{-1}(\operatorname{Sing} X))_{\infty} \cong X_{\infty} \setminus (\operatorname{Sing} X)_{\infty}.$$

Proposition

If X is a smooth scheme and $Z \subseteq X$ is an irreducible subscheme, then $\pi_X^{-1}(Z)$ is irreducible.

Nash components

X — singular variety

Definition

▶ Nash component with respect to X — irreducible component of $\pi_X^{-1}(\operatorname{Sing} X)$ containing at least one arc α such that $\alpha(\eta) \notin \operatorname{Sing} X$

Nash map

```
f: Y \to X — arbitrary resolution of singularities \{C_i\}_{i \in \mathcal{I}} — Nash components (with respect to X) \{E_j\}_{j=1}^m — irreducible components of f^{-1}(\operatorname{Sing} X)
```

Nash map

```
f: Y \to X — arbitrary resolution of singularities \{C_i\}_{i \in \mathcal{I}} — Nash components (with respect to X) \{E_j\}_{j=1}^m — irreducible components of f^{-1}(\operatorname{Sing} X)
```

 $\mathcal{N}: \{\mathsf{Nash\ components}\} \to \{\mathsf{irred}.\ \mathsf{components\ of}\ f^{-1}(\mathsf{Sing}\ X)\}$

Rule

 $\mathcal{N}(C_i) = E_j$ means f_{∞} maps the generic point of $\pi_Y^{-1}(E_j)$ to the generic point of C_i .

Nash map

```
f: Y \to X — arbitrary resolution of singularities \{C_i\}_{i \in \mathcal{I}} — Nash components (with respect to X) \{E_j\}_{j=1}^m — irreducible components of f^{-1}(\operatorname{Sing} X)
```

 $\mathcal{N}: \{\mathsf{Nash\ components}\} \to \{\mathsf{irred}.\ \mathsf{components\ of}\ f^{-1}(\mathsf{Sing}\ X)\}$

Rule

 $\mathcal{N}(C_i) = E_j$ means f_{∞} maps the generic point of $\pi_Y^{-1}(E_j)$ to the generic point of C_i .

Theorem (Nash)

The map $\mathcal N$ is injective onto the set of essential components over $\mathbf Y$.

Is the Nash map ${\mathcal N}$ bijective?

- 2003 Ishii–Kollár
 - ► toric varieties *yes*
 - ▶ dimension ≥ 4 no

- ▶ 2003 Ishii–Kollár
 - ► toric varieties *yes*
 - ▶ dimension ≥ 4 *no*
- ▶ 2012 de Bobadilla-Pe Pereira
 - ▶ surfaces yes

- ▶ 2003 Ishii–Kollár
 - toric varieties yes
 - ▶ dimension ≥ 4 *no*
- ▶ 2012 de Bobadilla-Pe Pereira
 - ▶ surfaces yes
- ▶ 2013 de Fernex
 - ▶ dimension ≥ 3 *no*

The Nash problem for toric varieties

Shihoko Ishii and János Kollár, *The Nash problem on arc families of singularities*, Duke Math. J. **120** (2003)

